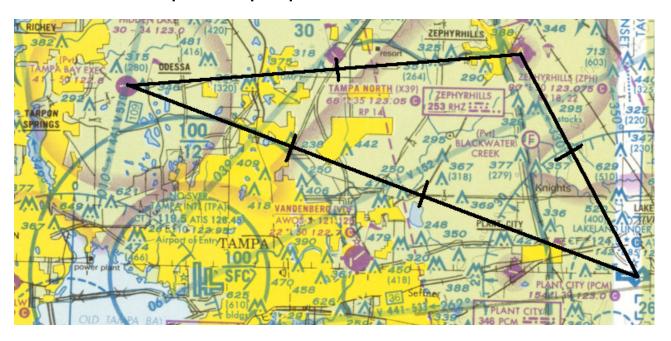
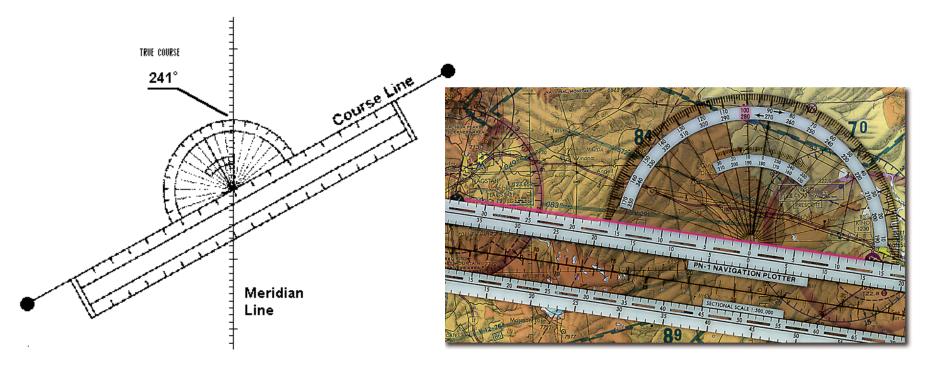
PREPARATION PHASE

Secure current charts (Sectionals, TACs), EB6, pencils, aircraft deviation card information from aircraft, POH for aircraft performance information, and Navigation Log.

View and mentally evaluate the route on sectional to determine general direction and altitudes you are likely to fly (odd/even 1000's +500)


View weather information (DUATS, NWS, AOPA) on computer, and/or call FSS to get a forecast of the time period you are planning the flight to appraise if is safe and legal.

SETUP PHASE


Determine True Course (TC) and Distances.

Draw a line using a plotter and pencil (<u>airport center to airport center</u>, or airport to checkpoint, checkpoint to checkpoint, checkpoint to airport)

Mark checkpoints perpendicular to the TC.

Determine TC using Plotter. Set midpoint of plotter on line and slide it until the grommet is centered on a meridian (latitude) line. Use some logic (and directional arrow on plotter) to read the correct scale for TC, then record for the entire flight, leg or until there is a change in course. Record TC.

Measure Distances. Total, leg, and segment. All segments should equate to total distance. Record Distances for each segment, leg and trip distance on navigation log.

						N.A	VIC	ITA	OΝ	LC	G								
oraft Murritair	No	Notes																	
				_															_
			-											_					_
										_									
											_								
Check Points	VOR			Wind	CAB	тс	тн	мн		Dist.	G8	Tin	011	GPH			t & ATIS A	dvisories	
History	idont	4	Alleber	Dir. W	и.	_	_		сн	Log	Est.	<u> </u>		<u> </u>	Dope	19010		Destin	enic
	Freq.	(Fround)		Temp.	TAS	+R WCA	-E +₩ Var.	≛Dev.		Ram.	Act.	-	ETA	Fuel			AT'S Code Collegia	-	
	-	├-	-	-	-	WUA	Var.	\vdash				ATE	ATA	Rem.			Wed	-	_
	+-	•		_	-	-	-	\vdash		\vdash	_						Altimater		_
	\vdash	\leftarrow	_	-	+-	_	_	\vdash			_	-		_			Approach		-
	\top	•			1						_						Rumway		_
																	1	mn Check	_
		7		-	7 !											Airp	ort Freque	ncies	ı
															De	раголю		Systematic	m
		_						Ш											
		4			4			Ш						_	ATIS		AT	-	_
	_	_			-		_	-	_						Gend		Ag	-	
	-	4			4 1	Н	-	Н		Ш		_			Tower		Tps		_
	-	-		-	+		_	-	_	-					CTAF		Gn CT/		
	+	•		\vdash	- 1	\vdash	_	\vdash				-			FSS		/5	-	_
		$\overline{}$		_	1	Н		-	_		-				UNICOM		UNIC	_	_
	+	•			† I			\vdash							Field Elev.		Fie	d	-
						-	-	Total	٠)	Н		Н			Block	i In	1 000	LogT	ime
Flight Plan are	d Weather	on en Rev	urse Side						÷	-		_			Block			1	_

Prepare on Navigation Log (In Jewel Box)

Check pt	VOR			WIND	CAS	TC	TH	MH		Dist	GS	Time C	Off	GPH
(fixes)	ldent	Course		Dir Vel		-L+R	-E+W							
	Freq	(flown)	Altitude	Temp	TAS	WCA	Var.	+/-Dev.	CH	Leg	Est.	ETE	ETA	Fuel
										Rem.	Act.	ATE	ATA	Rem.
ZPH		\ D ▶ 15		from your FD	calc	1	3	5						
		/ "		forecast	TAS	2	4	6	7					
X39		\ D ▶ 16		from your FD	calc	8	10	12						
LAL		/ D-		forecast	TAS	9	11	13	14	0				

sum est time
Totals > total none enroute none sum fuel

TC	TO CH EXPLAINED (IT SIMPLY SHOWS THE MATH TO GET TO EACH VALUE
1	I IN THIS BOX PUT THE TC between ZPH and X39 between ZPH and X39
2	IN THIS BOX PUT THE WIND CORRECTION ANGLE between ZPH and X39
3	FUT TC-WCA = TH between ZPH and X39
4	PUT IN THE VARIANCE (+/- ISOGONAL LINE VARIANCE FROM SECTIONAL) between ZPH and X39
- 5	FUT TH-VAR = MH between ZPH and X39
6	PUT IN DEVIATION (BASED ON TC AND DEVATION AS INDICATED ON MAG COMPASS between ZPH and X39
- 7	PUT IN CH WHICH IS THE MH(5) +/- DEV(6) between ZPH and X39
8	IN THIS BOX PUT THE TC between X39 and LAL
9	IN THIS BOX PUT THE WIND CORRECTION ANGLE between X39 and LAL
10	PUT TC-WCA = TH ZPH and X39 between X39 and LAL
11	PUT IN THE VARIANCE (+/- ISOGONAL LINE VARIANCE FROM SECTIONAL) between X39 and LAL
12	PUT TH-VAR = MH between between X39 and LAL
13	PUT IN DEVIATION (BASED ON TC AND DEVATION AS INDICATED ON MAG COMPASS between X39 and LAL
14	PUT IN CH WHICH IS THE MH(5) +/- DEV(6) between X39 and LAL

15 & 16 Use Direct simbol between way points. If flying victor airways, then use V-#### to indicate route

CROSS COUNTRY (X/C) PLANNING SARASOTA-BRADENTON Springs CLASS C CTC TAMPA APP WITHIN [420] 849 20 NM ON 119,65, 353:575 (81,4) THOMSON (PM) WAUCHULA (CHN) 35 - 27 122.7 Myakka Head GRIFFINS SCHWARTZ 89 - 40 PEACE (Pvt) (251) 259

LOWES (PVI)

340 1

309 (265)

(309)

Pilots are requested to avoid overflights below 1500 feet AGL in this area.

VPHRO

BRADENTON INTL (\$20) 120.14 @ ATIS 134.15 30 L 93 122.95

VORTAC -

SARASOTA 117.0 Ch 117 SRQ :

ST PETERSBURG

VENICE

206 VNC = : =

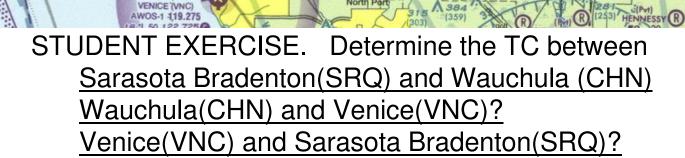
549

ARGADIA

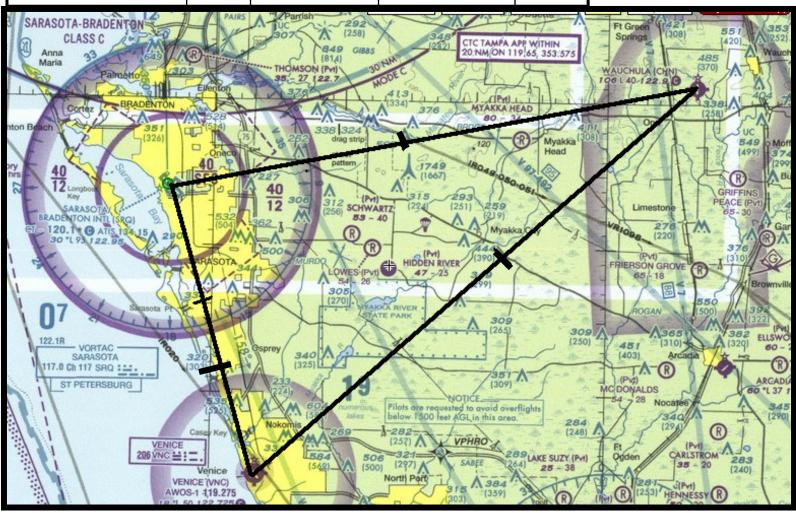
60 °L 37 1

CARLSTROM A

283


276

FRIERSON GROVE 65 - 18


MC DONALDS

(248)

289 LAKE SUZY (PM)

LEG	TC	LEG	VARIATION	MC
		DISTANCE	(4W)	
KSRQ-KCHN	81	37	+4	85
KCHN-KVNC	230	40	+4	234
KVNC-KSRQ	343	20	+4	347

Need to use "waypoints" along route. Now figure distance by waypoints. Put the Airports, Waypoints on Nav Log

CROSS COUNTRY (X/C) PLANNING:NAV LOG <u>TEMPLATE – Reusable for later X/C</u>

						N.A	Wie	TA	ION	LC)G							
Alecraft Number	₩525SL	Nons																
					-													
	WOR			Wind	CAS					Dist.	68	Tim	• OH	оен		Airpor	t & ATIS As	Minories
Check Points IFisen	ldont	Course		Dir. Wet.	120	TC	TH	МН		Log	Est.				Dope			Destination
17 17407	Freq.	(Round)	Allebigs			+L +B	-E #W	*,Day.	CH.	Ram.		ETE	ETA	Fuel			AT18 Code	
SRQ				Temp.	TAS	WCA	Var.				Act.	ATE	ATA	Rem.			Colling & Visits livy	
JIIQ		₽ D				81				16					<u> </u>		Wind	
•	<u> </u>	<u> </u>					+4			21		_					Altimater Approach	
tower		D >				81	+4			21	_						Burway	
CHN						230				17					-			nn Check
) D				230	+4									Ain	ort Freque	reies
road		D				230				23					De	рагълн		Dustination
VNC		7					+4											
		10				343				7				-	ATIS		ATI	
tower							+4			13					Cond		Apx Tow	
		D				343	+4							-	Dep.		Gm	
SRQ															CTAF		CTA	
		7													PSS		792	
															UNICOM		UNIC	
															Field Elev.		Flat Eler	
								Tet	als)	97					Bled			Log Time
Flight Man as SCALE 1:500,000			SE	CTÍ ONAL A	anow.	WITIOA	L OHA	RIS							Block	OUL	l	
Special May 19			5		+1				ıL		- 30			51		41	51	- 1

CROSS COUNTRY (X/C) PLANNING CALCULATION PHASE

Weather check 6 hours prior to flight. Get a "STANDARD BRIEFING." You will get LOTS of information. If it still is feasible, safe and legal then proceed to prepare full cross country information. You want to fly between 3000-6000 MSL. What are the best (legal) altitudes?

Determine True Airspeed (TAS)

You know altitude you will fly (odd+500, even+500), IAS, wind and temperature aloft from weather briefing.

- Use EB6 "calculator side" to align temperature over altitude in the pressure altitude window.
- Find CAS on the "B" scale. TAS is directly above on the "A" scale. For each leg (until altitude again changes), Record for each leg

Winds

Location	3000	6000
PIE	09010+30	11020+24

Pressure = 29.92 **CAS=120**

Leg	ALT	Wind Dir	VEL	TEMP	TAS
KSRQ-KCHN	3500	093	12	29	131
KCHN-KVNC	4500	107	18	25	133
KVNC-KSRQ	4500	107	18	25	133

Determine Wind Correction Angle (WCA) and Ground Speed (GS)

Use the "wind side" of the EB6. Rotate the azimuth so the true index is on the wind direction.

Adjust the sliding grid so the grommet rests above an even number (i.e., 100)

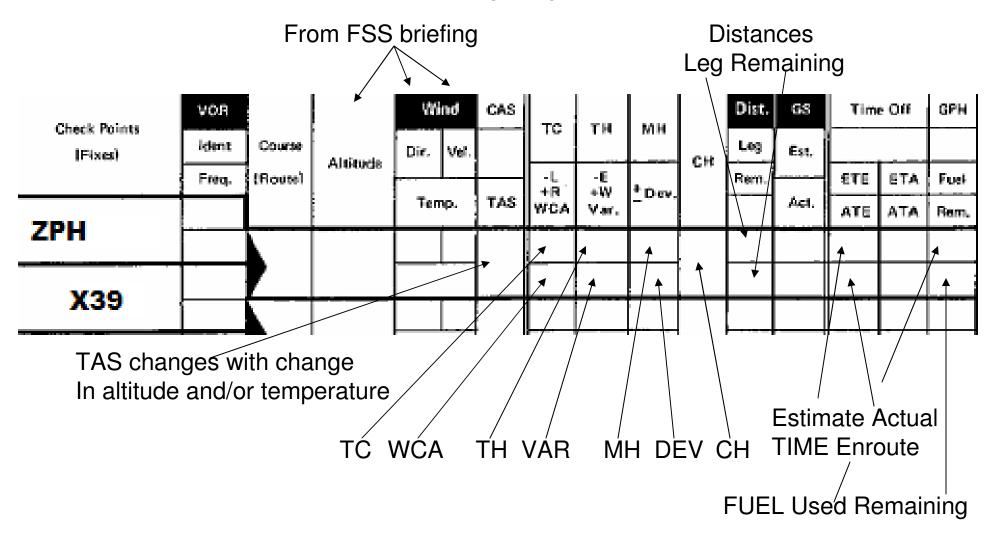
Using a pencil, mark an "X" at a point representing the number of knots wind speed above the grommet.

Rotate the azimuth to the TC.

Slide the penciled "X" to the TAS.

Read the **WCA**. Subtract if to left, or add if to right. Record _____

Ground speed is that speed indicated below the grommet. Record _____


WCA – TAS & CONFIG PRIOR TO WIND CALS BELOW:

						N/	М	TA		Ţ)G							
iscrafi Mumber	5 25SL	Notes																
														-				
															· · · · · · · · · · · · · · · · · · ·			
	WOR			Wind	CAS					Dist.	68	Tim	100	ОРН		Airpor	t & ATIS Ad	virories
Check Points IFissel	ldonit	Course	Allebra	Dir. Wet.	120	TC	TH	МН	ен	Log	Est.				Dope	mu re		Destination
	Freq.	(House)	Allenge			+L +B	-8 #W	*Dev.	6.0	Barn.		ETE	ETA	Feet			AT1S Code Calling &	
SRQ		<u> </u>		Temp.	TAS	WCA	Var.				Act.	ATE	ATA	Rem.	 		Visibility	
		-lo →	3500	093 12		-81				16	-				-		Altimater	
tower	\vdash	[29 093 12	131	+1	+4			21	<u> </u>	_					Approach	
tower		 D →	3500		131	81 +1	+4										Burney	
CHN			4500	107 18		230				17							Tir	nn Oheck
		D)	4300	25	133	-7	+4									Aig	ort Frequer	eias
road		D>	4500	107 18		230				23					Dve	рагълня		Sustination
VNC		۳		25 107 18	133	-7	+4			7					ATIS		ATI	. 1
		} D→	4500		133	343 +6	+4			Ľ.					Gend		Apr	_
tower			4500		100	343	T-7			13					Tower		Tom	
) D·	4300	25	133	±6	+4								Clep.		Gm	,
SRQ															CTAF		CTA	-
										L.,					PSS		/58	
)													UNICOM		UNIO	-
	-			L		L	-	77	als D	97					Elev.		Dies	
Flight Plan a	nd Weather I	.og en Ræ	eerse Side					100	»s J	31					Block			Log Time
ALE 1:500,000				CTÍ ONAL A	ERIONA	VUTICA	L OHA	RIS							<u> </u>			

Determine True Heading (TH) by adjusting for WCA. TC +/- WCA Record
Determine Magnetic Heading (MH). MH=TH +W/-E Record
Determine <u>Compass Heading (CH)</u> . The magnetic heading is adjusted on the deviation created by the aircraft. Adjust the MH +/– Deviation = Compass Heading Record
FINALLY: Determine Time and Fuel for each segment, leg of the flight.
TIME : Speed Index on GS on "A" scale, view distance on "A", and read time underneath on "B" (minutes) or "C" if greater than 1 hour. Record time enroute and time remaining
FUEL : Speed Index on GPH on "A" scale, view time on "B", and read fuel used above on "A". Record fuel consumed and remaining

Complete the data: Use +2 on deviation, 6 gph to complete calculations

						N#	WK	JAT	ION)G							
Nessett Number	5 25SL	Notes																
				IM at						Dist	68			оен		A december	& ATIS Ad	distribution.
Check Points	Mon			Wind	CAS	TC	тн	мн		Dist.			• 00	urn	Doport		. 0. (4.11.0 /44.	Destinacio
1Fisoni-	Freq.	(Gourne)	Allebide	Dir. Wet.	120	-L	-E	_	Сн	Log Ram.	Est.	ETE	ETA	Fuel	Dober	NI FIF	AT1S Code	License in the
	1.44	1		Temp.	TAS	+B WCA	±₩ Var.	Day.	1		Aet.	ATE	ATA	Rem.		-	Calling & Violation	
SRQ				093 12	-	04	82	86		16	119				l		Wind	
		10 >	3500		131	81 +1	+4	+2	88								Altimater	
tower				093 12		81	82	86		21	119					-	Approach	
CHN		10	3500	29	131	+1	+4	+2	88								Bureay	
CHIN		b	4500	107 18		230	223	227		17	142						Tim	n Check
		D)	1000	25	133	-7	+4	+2	229							Airp	ort Frequen	cies
road		Q	4500	107 18		230	223	227	229	23	142				Drep	erture		Dustination
VNC		۳			133	-7	+4	+2	229	_	440			_				
		-10 -	4500	107 18		343	349	353	355	7	142				ATIS		ATIC	
tower		<u> </u>			133	+6	+4	+2		13	142				Gend		Apat	-
tower		₽D →	4500		133	343 +6	349 +4	353 +2	355		172				Tower		Town	_
CHN				25	133	+0	+4	+4		-					CEAF		Grac CTA/	
	 -	→ │													FSS		F86	
		\leftarrow								-	-		-		UNICOM		UNICO	
	_	† ∣										-,			Field		Field	-
	-	<u> </u>		L			_	To	tals I	97		-			Elev. Block	In	Elex	Log Time
Flight Plan ar	nd Weather I	Log on Rev	Herse Side					- 17	- F						Block C			
ALE 1:500,000				CTIONALA		VUTICA	L OHA											
est Min. 9								ri	л		- 11	2		- 51		-	- 51	

ONE LAST CONSIDERATION BEFORE YOU GET IT ALL CORRECT.

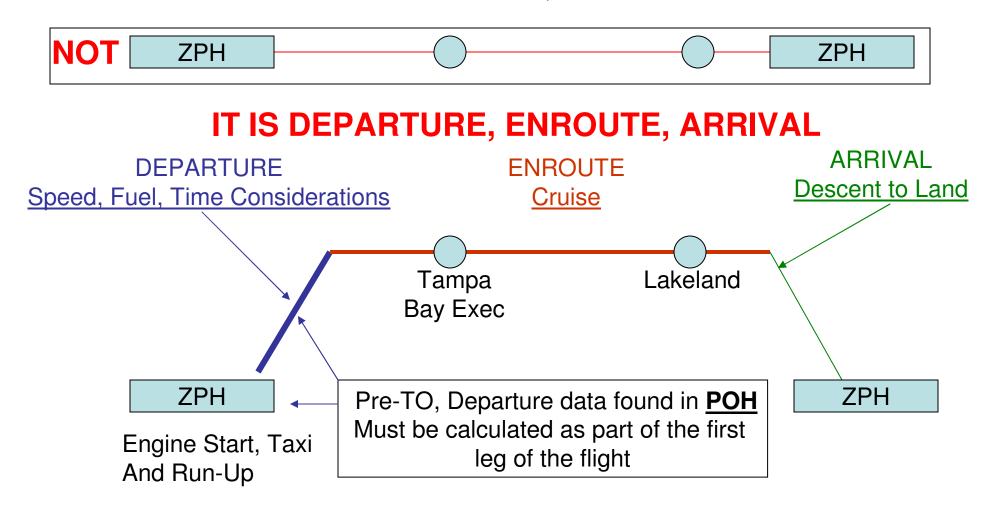
RUNUP-TAXI-CLIMBOUT CONSIDERATIONS.

Complete the data: Use +2 on deviation

						N.	WK	TA	ION	LO)G							
Aleszett Member	525SL	Notes																
					-													
												-		-				
															· · ·			
	YOR			Wind	CAS			Γ		Dist.	68	Tin	e ON	оен		Airpor	t & ATIS A	Wirories
Check Points IFixed	İdonit	Course		Dir. Wet.	120	TC	TH	МН		Log	Est.	9	:00		Dopa	190 19		Destination
17 18880	Freq.	(Round	Altitude			+L +B	-E +W	* Day.	Сн	Barn.		ETE	ETA	Fuel			AT18-Code	
SRQ				Temp.	TAS	WCA	Var.				Act.	ATE	ATA	Rem.			Colling & Visitality	
JIIQ		 D>	3500	093 12		-81	82	86 +2	88	16	119	8;04		.8	ļ		Wind	
•	-	۲		29 093 12	131	+1	+4 82	86	00	21	110	10:35		1.1			Altimoter	
tower	+-	Ð→	3500		131	81 +1	+4	+2	88	21	119	10.33		1.1			Approach	
CHN				107 18	131	230	223	227	00	17	142	7:11		.7				rin Check
		PD→	4500	25	133	-7	+4	+2	229							Ain	port Freque	reies
road		D>	4500	107 18		230	223	227	200	23	142	9:43		1.0	De	раголе		Dustination
VNC		בין		25	133	-7	+4	+2	229		440	0.55				1		
		-10 >	4500	107 18	400	343	349	353	355	7	142	2:57		.3	ATIS		ATI	
tower			4500		133	+6	+4	+2	l	13	142	5:30		.6	Clend		Age Tow	
		}D →	4500	107 18 25	133	343 +6	349 +4	353 +2	355	-					Gep.		Ger	
SRQ									_						CTAF		CTA	F
		7													FSS		15	
															UNICOM		UMIC	-
				<u></u>						0-7		44.00			Field Elev.		Fie Ele	
Flight Plan a	rd Blasthar I	on on Por	roma Cido					Te	tals)	97		44:00		4.4	Block			Log Time
CALE 1:500,000			SE	CTÍONAL A	8 monw	VUTICA	L OHA	RTS							L	weldt.	I	
one Min. 1			# B	- 1				el.	JE		31			- 51		31	- 60	- 4

PROCESS SIMPLIFIED

- o TAS (Temp over Alt in Pressure Window) IAS on "B", TAS on "A"
- WCA (Set Wind on Index, mark velocity, rotate to TC, read WCA (-left, +right)
- o GS (Move slider so mark on TAS. GS under grommet)
- o TH = TC + /- WCA
- o MH = TH +W/-E variance
- o CH = MH +/- Aircraft Deviation


$$T (TH = TC + / - WCA)$$

V get magnetic variance

$$M (MH = TH +/- V)$$

- D get deviation from compass card (or POH)
- C (CH = MH +/- D)

So far we have been learning how to compute X/C on the ENROUTE portion of flight without consideration of either PRE-TAKEOFF, DEPARTURE OR ARRIVAL.

TIME, FUEL, AND DISTANCE TO CLIMB

MAXIMUM RATE OF CLIMB

CONDITIONS:

Flaps Up Full Throttle

Standard Temperature

NOTES:

- Add 1.1 gallons of fuel for engine start, taxi and takeoff allowance.
- Mixture leaned above 3000 feet for maximum RPM.
- Increase time, fuel and distance by 10% for each 10°C above standard temperature.
- Distances shown are based on zero wind.

7	PRESSURE	TEMP	CLIMB	RATE OF	F	ROM SEA LE	VEL
WEIGHT LBS	ALTITUDE FT	oC	SPEED	CLIMB FPM	TIME	FUEL USED GALLONS	DISTANCE NM
2300	S.L.	15	73	770	0	0.0	0
	1000	13	73	725	1	0.3	2
	2000	11	72	675	3	0.6	3
	3000	9	72	630	4	0,9	5
	4000	7	71	580	6	1.2	8
	5000	5	71	535	8	1.6	10
	6000	3	70	485	10	1.9	12
	7000	1	69	440	12	2.3	15
	8000	-1	69	390	15	2.7	19
	9000	-3	68	345	17	3.2	22
	10,000	-5	68	295	21	3.7	27
90	11,000	-7	67	250	24	4.2	32
	12,000	9	67	200	29	4.9	38

Cessna 172N POH INFO

Specified to ADD 1.1 Gals for engine start, taxi, & TO THIS MUST BE ADDED TO FUEL REQUIRED ON 1ST LEG OF FLIGHT.

IAS
TIME TO CLIMB
FUEL USED
DISTANCE

DEPARTURE
COMPUTE
SEPARATELY
AND REDUCE
FROM
REMAINDER
OF LEG

DEPART ZPH (ELEATION=92), CLIMB TO 3,000 MSL, WIND 300@ 20KT

1. TIME, DISTANCE, SPEED (POH [STD DAY]) FOR DEPARTURE FROM ZPH-3000

ler .	PRESSURE	TEMO	CLIMB	RATE OF	FROM SEA LEVEL			
LBS	ALTITUDE FT	TEMP	SPEE D KIAS	CLIMB FPM	TIME	FUEL USED GALLONS	DISTANCE	4 MINS
2300	S.L.	15	73	770	0	0.0	0	5 NM
	1000	13	73	725	1	0.3	2	
	2000	11	72	675	3	0.6	3	72 KTS
	3000	9	72	630	4	0.9	5	0.9 GALS

WHAT WILL YOUR GROUND SPEED BE (NOT 72 BECAUSE OF WINDS)?

GIVEN GROUND SPEED AND TIME, WHAT IS THE DISTANCE BE (5NM)?

2. REVISE FIRST LEG INCLUDING DEPARTURE AND CRUISE TO X39

ZPH

CRUISE CHKPT (SOME PILOTS MAKE THIS THE 1st CHKPT (2nd tower) X39 OTHERWISE INCLUDE DEPARTURE IN 1ST LEG)

. . .

- - -

ENROUTE

CRUISE PERFORMANCE

WE WILL CRUISE 3000 FT WITH 2300 RPM, STD TEMP: **SPEED 105, 6.55 GPH**

CONDITIONS: 2300 Pounds Recommended Lean Mixture

Α	В					C				
PRESSURE	RPM		OC BELC			TANDAR		STAI	OC ABO	VE TEMR,
ALTITUDE FT	111 191	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
2000	2500 2400 2300 2200 2100	72 64 56 50	111 106 101 95	8.0 7.1 6.3 5.8	75 67 60 53 47	116 111 105 100 94	8.4 7.5 6.7 6.1 5.6	71 63 56 50 45	115 110 105 99 93	7.9 7.1 6.3 5.8 5.4
4000	2550 2500 2400 2300 2200 2100	76 68 60 54 48	116 111 105 100 94	8,5 7.6 6.8 6.1 5.6	75 71 64 57 51 46	118 115 110 105 99 93	8.4 8.0 7.1 6.4 5.9 5.5	71 67 60 54 48 44	118 115 109 104 98 92	7.9 7.5 6.7 6.1 5.7
6000	2600 2500 2400 2300 2300 2200 2100	72 64 57 51 46	116 110 105 99 93	8.1 7.2 6.5 5.9 5.5	75 67 60 54 49 44	120 115 109 104 98 92	8.4 7.6 6.8 6.2 5.7 5.4	71 64 57 52 47 42	120 114 109 103 97 91	7.9 7.1 6.4 5.9 5.5 5.2
8000	2650 2600 2500 2400 2300 2200	76 68 61 55 49	120 115 110 104 98	8.6 7.7 6.9 6.2 5.7	75 71 64 58 52 47	122 120 114 109 103 97	8.4 8.0 7.2 6.5 6.0 5.5	71 67 60 55 50 45	122 119 113 108 102 96	7.9 7.5 6.8 6.2 5.8 5.4
10,000 ,	2650 2600 2500 2400 2300 2200	76 72 65 58 52 47	122 120 114 109 103 97	8.5 8.1 7.3 6.5 6.0 5.6	71 68 61 55 50 45	122 119 114 108 102 96	8.0 7.6 6.8 6.2 5.8 5.4	67 64 58 52 48 44	121 118 112 107 101 95	7.5 7.1 6.5 6.6 5.3
12,000	2600 2500 2400 2300 2200	68 62 56 50 46	119 114 108 102 96	7.7 6.9 6.3 5.8 5.5	64 58 53 48 44	118 113 107 101 95	7.2 6.5 6.0 7.5.6 5.4	61 55 51 46 43	117 111 106 100 94	6.8 6.2 5.5 5.3

NEED TO USE POH TO DETERMINE X. SPEED (TAS) <u>GS WILL DIFFER</u> Y. FUEL RATE (GPH)

BASED ON
A. PRESSURE ALTITUDE
B. CRUISE RPM
C. TEMPERATURE

INTERPOLATION IS LIKELY REQUIRED TO DETERMINE AIRSPEED AND FUEL RATE

ARRIVAL SEGMENT

MINIMAL IMPACT (AIRSPACE D, E, G) IN THAT MOST PILOTS
REDUCE DESCEND MAINTAINING SAME AIRSPEED WITH SAME
OR LESS FUEL CONSUMPTION; THEREFORE TREAT AS YOU DID
WITH CRUISE COMPONENT.

IF YOU ARE IN CONTROLLED AIRSPACE WITH APPROACH CONTROL, EXPECT VECTORS AND COURSE CHANGES IN THE ARRIVAL SEGMENT OF THE FLIGHT.

IN AIRSPACE C & B, SOME PILOTS WILL ADD 5 MINUTES TO ADJUST FOR EXPECTED VECTORING BEFORE LANDING.

Homework Quiz: Prep NavLog for flight from KTPA-KSEF

Critical Numbers

Cruise Altitude=5,500 MSL, Cruise CAS=120 Kts, Climb GS = 70 Kts, Fuel 24G, Fuel Flow-Climb =8 GPH, Fuel Flow-Cruise =6 GPH, Deviation= +3, Variation=+4, Winds Aloft at 3000=33010+20, Winds Aloft at 6000=35020+10. Taxi/TO requires 2 Gals of fuel, Climb at TAS 70 will take 8 minutes and yield average of 700 fpm.

Set up Navigation Log to include point of transition from climb to cruise. Note altitude limits on MOA.

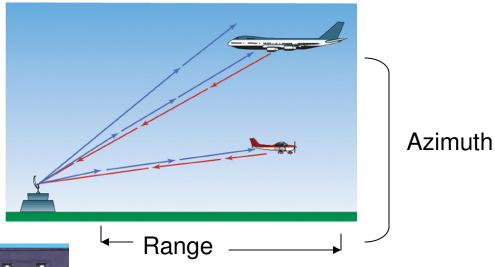
KVDF

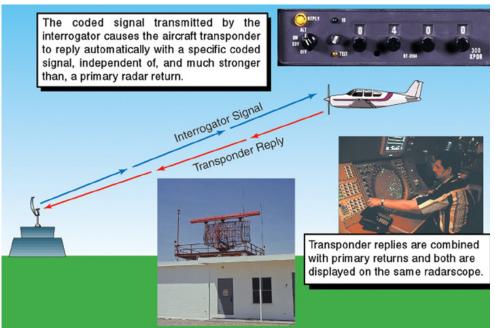
You pick 2 waypoint beyond transition from climb to cruise

KSEF

Show all information on Navigation Log and URN NASINEX CONSTRUCTION OF THE PROPERTY OF THE PRO

SEE HANDOUT INFO SHEET


CROSS COUNTRY COMMUNICATIONS AND FLIGHT INFORMATION


QUESTIONS?

ENROUTE ON YOUR CROSS COUNTRY YOU NEED TO KNOW ABOUT RADAR SERVICES, FSS, AND COMMUNICATIONS.

COMMUNICATIONS AND FLIGHT INFORMATION RADAR AND ATC SERVICES

RADAR (Radio detection and ranging) PRIMARY

Air Traffic Control Radar Beacon System (ATCRBS)

Secondary overcomes limitation of primary. When used with transponder (interrogator) it is very solid.

COMMUNICATIONS AND FLIGHT INFORMATION RADAR AND ATC SERVICES

TRANSPONDER

SQUAWK (DIAL 4-DIGIT CODE)

SQUAWK STANDBY – go to standby mode.

STOP ALTITUDE SQUAWK - Move control OFF MODE C usually to MODE A

SQUAWK ALTITUDE – Move control from MODE A to MODE C to report altitude.

IDENT – Press the IDENT button on the transponder to make your squawk stand out from all other squawks currently being viewed the ATC controller.

SQUAWK (4-digit number) and IDENT – set the 4-digit code into the transponder and press IDENT.

SQUAWK LOW/NORMAL – Operate your transponder on LOW or NORMAL as requested. Transponders operated in NORMAL position unless ATC specifies LOW. (Some transponders don't have a "Normal" label but "ON" is the same as NORMAL for those aircraft)

STOP SQUAWK – Turn your transponder OFF.

SQUAWK MAYDAY on 7700: If you have an EMERGENCY, enter 7700 into the transponder. That sets off an alarm at ATC and they will respond accordingly.

SQUAWK VFR – Set code to 1200 if instructed. Normal we always set when flying VFR from an uncontrolled airfield.

SPECIAL CODES:

CODE 7500 IS RESERVED AS HIJACK NOTIFICATION.

CODE 7600 IS RESERVED AS FAILURE OF 2-WAY COMMUNICATION NOTIFICATION.

CODE 7700 IS RESERVED AS EMERGENCY NOTIFICATION.

BE CAREFUL IN CHANGING FREQUENCIES NOT TO ACCIDENTLY ROTATE THRU ONE OF THE RESERVED FREQUENCIES.

COMMUNICATIONS AND FLIGHT INFORMATION RADAR SERVICES

FAA SERVICES

AIRPORTS – ASR, TRACON, ARTS AIR ROUTE – ARSR, ARTCCs

VFR RADAR SERVICES

FLIGHT FOLLOWING ("Radar Traffic Information Services") SAFETY ALERTS: terrain, obstruction, aircraft proximity alerts

TERMINAL VFR RADAR SERVICE:

BASIC – Safety, Alerts, and some vectoring

TRSA - Basic + Sequencing (IFR) and Separation (IFR/VFR)

CLASS C – Basic + sequencing + separation

CLASS B – Basic + sequencing + separation based on weight.

Following the airport name and ATIS phonetic letter identifier, the broadcast states the time of the current weather report,

Centennial Airport Information Uniform, 1145 Zulu weather.

magnetic wind direction and velocity,

wind 330 at 11.

visibility, obstructions to visibility, and ceiling/sky condition,

visibility 30, 8,000 broken,

temperature and dewpoint (if available),

temperature 21 check density altitude, dewpoint 10.

and altimeter setting.

altimeter 30.22.

Next, the instrument approach and runways in use are indicated.

Visual approach in use landing and departing Runways 35 Right and Left. Departing Runway 10, landing Runway 28.

The ATIS broadcast also contains any other pertinent remarks relating to operations on or near the airport, such as closed runways or temporary obstructions.

Notices to Airmen, Runway 28 REILs out of service. Advise ground control direction of flight. The following special procedures are in effect; advise ground control when ready for departure with departure intersection. Arrivals use caution, simultaneous operations in progress on parallel runways.

The phonetic letter identifier is restated at the end of the broadcast.

Advise on initial contact you have Information Uniform.

FLIGHT SERVICE STATION

BRIEFING: Contact for Briefings (1 800 WX BRIEF)

FLIGHT PLANS: Filing of V/IFR Flight Plans

CONTACT: Airborne contacts for weather and airport advisories

VHF/DF FINDING: Enroute assistance if you get lost (radio triangulation)

SEARCH AND RESCUE: Alerted by FSS when you have not reported (CLOSED YOUR FLIGHT PLAN) within 30 minutes of ETA.

Most now work using automation. Ten years ago there were 1,200 FSS facilities nationwide but due to privatization, Honeywell, that was reduced to 13 by 2009, and after February 2011 there will only be 7 FSS facilities that pilots can use for pilot briefings and contact.

AFSS: Use these shortcuts in place of voice recognition when calling 800-WX-BRIEF

- Press 1 to speak to a Briefer; enter state code (see below).
- Press 2 to issue, cancel, or amend Notams (authorized persons only).
- Press 3 to listen to TIBS (transcribed information briefing service); enter state code.
- Press 4 to record a Fast File Flight Plan.
- Press 5 to hear Special Announcements.

Additional telephone numbers:

• Clearance Delivery: 888-766-8267

• TIBS direct line: 877-4-TIBS-WX (877-484-2799); enter state code

Alabama	AL or 25
Alaska	
Arizona	
Arkansas	-
California	
Colorado	
Connecticut	CT or 28
Delaware	DE or 33
District of Columbia	DC or 32
Florida	FL or 35
Georgia	GA or 42
Hawaii	
Idaho	ID or 43
Illinois	IL or 45
Indiana	IN or 46
lowa	IA or 42
Kansas	KS or 57
Kentucky	
Louisiana	
Maine	
Maryland	
Massachusetts	
Michigan	
Minnesota	
Mississippi	
Missouri	
Montana	IVI 0r 68

Nebraska	NE or 63
Nevada	NV or 68
New Hampshire	NH or 64
New Jersey	NJ or 65
New Mexico	NM or 66
New York	NY or 69
North Carolina	NC or 62
North Dakota	
Ohio	OH or 64
Oklahoma	
Oregon	OR or 67
Pennsylvania	PA or 72
Puerto Rico	PR or 77
Rhode Island	RI or 74
South Carolina	SC or 72
South Dakota	
Tennessee	TN or 86
Texas	
Utah	UT or 88
Vermont	
Virgin Islands	VI or 84
Virginia	
Washington	
West Virginia	
Wisconsin	
Wyoming	WY or 99

VHF COMMUNICATIONS IS LIMITED TO "LINE OF SIGHT"

Altitude	NM Range of VHF
1000	39
1500	48
2000	55
3000	69
5000	87
10000	122
15000	152
20000	174

SPEAK ZULU

TIME CONVERSION TABLE							
To Convert From To UTC (Zulu)							
Eastern Standard Time	Add 5 hours						
Central Standard Time	Add 6 hours						
Mountain Standard Time	Add 7 hours						
Pacific Standard Time	Add 8 hours						
For DAYLIGHT TIME, SUBTRACT 1 HOUR FROM CONVERSION TIME							

ALWAYS LISTEN BEFORE HITTING TRANSMIT SO YOU DO NOT "WALK-ON" OTHERS

MOST ALL COMMUNICATIONS HAS 3 PIECES OF INFORMATION WHO (YOU ARE CALLING AND WHO YOU ARE)

WHERE AND HOW HIGH (IF ALOFT)

WHAT IS YOUR REQUEST OR INTENTION

EXAMPLES

Approaching Zephyrhills...

Zephyrhills Traffic, this is Cessna N735NC...

10 miles west

Inbound for landing, full stop, runway 04

If busy You WAIT for acknowledgement before giving all details.

Tampa approach, Cessna N736NC, over

Tampa...Go ahead 376NC

Cessna N735NC.

Departed Zephyrhills VFR climbing thru 1500

Request vectors thru "Bravo" to Clearwater Airport

Tip on Communicating with a Busy Tower

Say "Request" to Tower

When contacting the tower, state your N number, as you would on any inbound flight, and then add one word: "Request."

Now you have the tower's attention, and you have let the controller know that something's on your mind. Having heard that one key word, the controller can decide whether to solicit your request immediately or deal with other chores first.

What should you expect to hear?

The response will be 'Stand by' or 'Say request.' Your prime objective is to fly the airplane, while the controller's task is to separate traffic. Help them to do their job by being professional on the radio.

VFR Communications Kit

Review CD-Jewels "VFR Communications Kit"

Communications phraseology for both uncontrolled and controlled airspace.

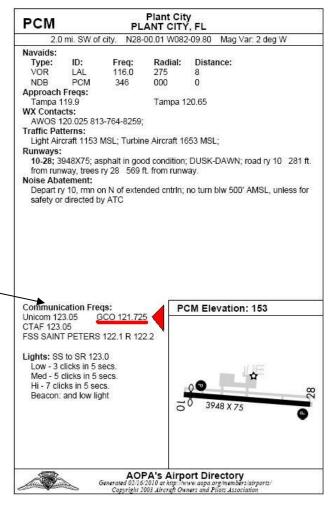
COMMUNICATIONS AND FLIGHT INFORMATION <u>Uncontrolled Airport Communications</u>

CTAF – Common Traffic Advisory Frequency IN AF/D "(Airport Name) Traffic...." MULTICOM: Can perform same function if non-published CTAF frequency on

122.9

UNICOM: Privately owned air/ground comm. Will sometimes provide "Airport Advisories" and provide services (phone, taxi, fuel, etc.)

GCO – Ground communication outlet (AF/D) allows VHF-to-telephone link to ATC (FSS). See next slide


Facility at Airport	Frequency to Use
UNICOM (No Tower or FSS)	Communicate with UNICOM station on published CTAF; 122.7, 122.725, 122.8, 122.975, or 123.0.
No Tower in Operation, FSS Open	Communicate with FSS on CTAF.
No Tower, FSS, or UNICOM	Self-announce on MULTI– COM frequency 122.9.
Tower or FSS Not in Operation	Self-announce on CTAF.

Ground Communication Outlet

A ground communication outlet is an automatic, remotely controlled, ground to ground communications device. Pilots at non-tower airports may contact the local Air Traffic Control (ATC) facility and / or Flight Service Station (FSS) by aircraft radio-to-telephone connection located on the airport. The telephone call goes to the appropriate FSS or sector ATC controller. Pilots may receive an instrument clearance, close a VFR or IFR flight plan, get an updated weather briefing prior to take off, or any other FSS or ATC services.

Use the listed frequency for the airport (121.725 or 135.075). Activate the system with four "key clicks" on the VHF radio to contact the appropriate ATC facility or six "key strokes" to contact the FSS. There is timer on the modem connection. If no voice is heard for a preset time period, the system will disconnect. Note that the VHF transceiver on the airport is very low power, 2 - 5 watts. You may not be able to establish contact when between hanger rows or near other obstructions. Additionally, you may need to reposition your aircraft slightly when stopped on the taxiway. The GCO system is intended to be used only on the ground. Airports with GCO are noted in the text portion of the airport diagram

THE CONTRACTORS

COMMUNICATIONS AND FLIGHT INFORMATION Controlled Airport Communications

Air Traffic Control (ATC) clearances and instructions: They rule the roost, BUT you are pilot in control and have the final say and total responsibility.

DEPARTURE PROCEDURES

- ATIS Get traffic, weather and expected departure/arrival procedures before contacting DEPARTURE CONTROL
- DELIVERY CLEARANCE If it exists at that airport USE IT prior to contact of Ground Control (reduces workload for controllers).
- GROUND CONTROL Command every movement on the ground on all areas except active runways (other than crossing).
- CONTROL TOWER Command every movement entering, on and exiting the active runway, and aircraft movements immediately after liftoff.
- DEPARTURE CONTROL Command every movement after release from the control tower.

ARRIVAL PROCEDURES

ATIS → APPROACH CONTROL → CONTROL TOWER → GROUND CONTROL

APPROACH CONTROL – Commands every movement from entry to hand off to Control Tower. EXPECT VECTORS ESPECIALLY IN "BRAVO"

Departure Procedures

Plan	Radios	Organize	Clearance	Exercise Caution	Expedite	Depart
Plan your route. Get a preflight weather briefing. Consider filing a VFR flight plan.	Tune before taxiing or at the runup pad— not while taxiing or in the terminal area.	Have charts and notes handy for ready reference. Minimize cockpit distractions.	Get ATIS, AWOS, or ASOS before calling clearance or ground control. Read back all clearances.	Heed all taxiway and runway hold markings. Be extra careful at night or in low visibility.	When cleared to cross an active runway, or for takeoff, scan the area and comply quickly or notify ATC of the delay.	Scan the final approach area as you taxi into position for takeoff.

Arrival Procedures

ATIS	Review	Radios	Inbound	Visual Check	Arrival	Landing
Before calling approach or tower controllers, check ATIS, AWOS, or ASOS.	Study the airport diagram, anticipate the active runway, and visualize your taxi route.	Preset the tower and ground frequencies.	Turn on lights when 5-10 miles out. Begin the before-landing checklist.	Look for traffic when approaching the airport. Be accurate in your position reports.	Complete the before-landing checklist. Follow tower's instructions for landing.	Clear the runway ASAP. Don't switch to ground control until instructed.

If you are unable to contact ATC:

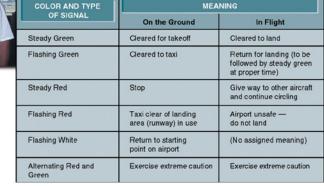
- · Ensure that you are using the correct frequency. Try a different frequency for the ATC facility, if available.
- · Check the volume and squeich on your transceiver.

· Check the switch position on your audio control panel.

· Verify that your mike is properly plugged into the jack. If you are wearing headsets, ensure that both the speaker and mike plugs are in the jacks all the way.

· Try the hand held mike if you are using headsets.

· If your aircraft is equipped with more than one radio, try the alternate transceiver.


 If it is within range, call the last ATC facility with which you had contact to request assistance.

If after taking these steps, you still are unable to contact ATC, follow the lost communication procedures.

You may still land in airspace D if radio failure by tuning Transponder To 7600, follow the pattern, keep visual contact with tower to receive light signals and acknowledge by rocking your wings (daytime) or blinking landing lights (night).

EMERGENCY COMMUNICATIONS

DON'T HESITATE FOR THE CONCERN TO BECOME URGENT – LET PEOPLE

KNOW IF SOMETHING IS NOT RIGHT. CONTACT 121.5 AND ADVISE.

NEAR EMERGENCY ("PAN-PAN-PAN")

EMERGENCY ("MAYDAY-MAYDAY") TRANSPONDER TO 7700

DISTRESS or URGENCY	"MAYDAY-MAYDAY or "PAN-PAN-PAN"
NAME OF STATION ADDRESSED	"TAMPA RADIO"
IDENTIFICATION/TYPE OF AIRCRAFT	"5674R Cessna 172,"
NATURE OF DISTRESS OR URGENCY	"trapped above overcast"
WEATHER	"marginal VFR"
YOUR INTENTIONS AND REQUEST	"request radar vectors to nearest VFR airport"
PRESENT POSITION AND HEADING	"Lakeland VOR, heading 253 degrees"
ALTITUDE	"6,500"
FUEL REMAINING IN HRS & MINS	"Estimated 30 minutes fuel remaining"
NUMBER OF PERSONS ONBOARD	"three persons onboard"
ANY OTHER USEFUL INFORMATION	"squawking 7700"

IN TROUBLE, REMEMBER THE FIVE "C"s

CLIMB

COMMUNICATE

CONFESS

COMPLY

CONSERVE

EMERGENCY LANDINGS – FLIGHT INSTRUCTORS TO SHOW AND PRACTICE APPROPRIATE PROCEDURES.

ELT (Emergency Locator Transmitter) G's or Manual Trigger to provide search and rescue rapid location by transmitting audio Tones on 121.5(VHF) and 243.0(UHF). Capable of continuous TX For approximately 48 yours. Some even equipped with microphones.

Helpful Hints

- LISTEN to others: Get an aircraft scanner and listen to communications better understand phraseology for different situations. Your flight instructor will tell you most you need, but listen and learn from others.
- USE HEADPHONES: Cuts ambient noise, keeps your voice and inflection appropriate (not screaming over the engine noise).
- THINK AHEAD: Know what you are going to say be fore you do it.... Stops "Ums" "Ehrs" and "Ahaas" to a minimum. Helps your organization and makes you sound professional.
- BE COURTEOUS: TWO-MULTI-WAY communications Do hog, be brief.

 If you can accurately communicate in 10 words, don't use 30. Your hogging airtime that other pilots are needing to communicate.

MEMORIZE THE PHONETIC ALPHABET – YOU WILL USE IT A LOT

PRONUNCIATION KEYS

Letter A B C D E F G H I J K	Word Alpha Bravo Charlie Delta Echo Foxtrot Golf Hotel India Juliet Kilo Lima	Pronunciation AL FAH BRAH VOH CHAR LEE or SHA DELL TAH ECK OH FOKS TROT GOLF HOH TELL IN DEE AH JEW LEE ETT KEY LOH LEE MAH	R LEE	Number 0 1 2 3 4 5 6 7 8 9	Pronunciation ZE-RO WUN TOO TREE FOW- er FIFE SIX SEV - en AIT NIN - er
M N O P Q R S T U V W X Y Z	Mike November Oscar Papa Quebec Romeo Sierra Tango Uniform Victor Whiskey X-ray Yankee Zulu	MIKE NO VEM BER OSS CAH PAH PAH KEY BECK ROW ME OH SEE AIR RAH TANG GO YOU NEE FORM VIK TAH WISS KEY ECKS RAY YANG KEY ZOO LOO	Number 10 75 100 583 2 500 5 000 11 000 25 000 38 143	FIFE THOUSAND ONE ONE THOUSAND TWO FIVE THOUSAND	

SOURCES OF INFORMATION

AIRPORT/FACILITY GUIDE
FEDERAL AVIATION REGULATIONS
AERONAUTICAL INFORMATION MANUAL
NOTAMS
ADVISORY CIRCULARS
JEPPESEN INFORMATION SERVICES – PAY FOR IMMEDIATE NOTIFICATION.
FLIGHT PUBLICATIONS

<u>Aviation Radio Frequency Bands: See instructor notes on CD</u>

WHAT IS THE EMERGENCY FREQUENCY (MEMORIZE IT)

Next Session, please bring E6B, PN1, Miami sectional, and home work X/C results

Complete reading chapters 9 and 11 for study of navigation (dead reckoning, pilotage) the flight plan, Radio Navigation (VOR, NDB. DME, HSI, INS, GPS, etc.)

We will start by review of FLIGHT PLANNING, Study your results, and likely do another inclass navigation planning exercise.